

Coupling of MD with Continuum Mechanics via a Bridging Scale Approach

Multiscale Simulation Methods Workshop Livermore, CA January 15, 2004

Greg Wagner, Sandia National Laboratories

Collaborators

Northwestern University

Prof. Wing Kam Liu

Prof. Dong Qian (U. of Cincinnati)

Harold Park

Eduard Karpov

Hiroshi Kadowaki

Sulin Zhang

Prof. Shaofan Li (U.C.-Berkeley)

Sandia National Laboratories

Jonathan Zimmerman

Chris Kimmer

Reese Jones

Patrick Klein

Examples of Multi-Scale Phenomena in Solids

Fracture/Failure of Solids

Prof. Shaofan Li, U.C.-Berkeley

Nanoindentation

Dr. Eduard Karpov, Northwestern University

Nanoscale Devices

Poncharal et al., Science 283:1513

Film Growth

Concurrent Multiscales: Motivation

- Molecular dynamics simulations are limited to small domains (~10⁶-10⁸ atoms) and small time frames (~nanoseconds)
 - Experiments, even on nano-systems, involve much larger systems over longer times
- Continuum models are good, but not always adequate
 - Problems in fracture and failure of solids require improved constitutive models to describe material behavior
 - Molecular dynamics is required in regions of high deformation or discontinuity
- Multiple scale nature of these problems calls for a combined molecular dynamics/continuum mechanics approach

Concurrent Multiple Scales: Goals

- Method for coupling molecular dynamics to finite element or meshfree computations in concurrent simulations
 - Simulation of time dependent, finite temperature problems
- True "coarse scale" discretization in continuum
 - No meshing down to atomic scale
 - Subcycling time-stepping algorithms to take advantage of multiple time scales
 - don't want to be limited to nano time scale everywhere in the domain
- Easy implementation
 - Re-use of existing MD and continuum codes
 - Easily parallelizable algorithms

Concurrent Coupled Simulations

- Molecular dynamics to be used in region of interest
 - near crack/shear band tip
 - inside shear band
 - at area of large deformation
 - around dislocations
 - etc.
- Finite elements/meshless "coarse scale" defined everywhere in domain
 - not just overlap/handshake region
- Bridging scale used to ensure FEM gives correct coarse scale behavior

- First, formally define exactly what is simulated at each scale
 - decompose total solution into coarse and fine scales
 - "bridging scale" used to represent the part of the total solution common to both simulations
 - provides coupling between the two simulations
- Second, eliminate fine scale degrees of freedom analytically outside of region of interest
 - use molecular dynamics (MD) only where necessary
 - use bridging scale decomposition to further define coupling between simulations
 - constitutive law in pure coarse scale region
 - boundary conditions on MD region

Coarse-Fine Decomposition

- Fields like displacement are decomposed into coarse and fine scales: $\mathbf{u} = \overline{\mathbf{u}} + \mathbf{u}'$
- Coarse scale is represented by smooth basis functions associated with nodes, e.g. finite element shape functions:

$$\overline{\mathbf{u}}(\mathbf{X}_{\alpha}) = \sum_{I} N_{I}(\mathbf{X}_{\alpha}) \mathbf{d}_{I} \xrightarrow{\text{matrix}} \overline{\mathbf{u}} = \mathbf{N}\mathbf{d}$$

– nodal degrees of freedom minimize mass-weighted error norm:

$$E = (\mathbf{u} - \mathbf{N}\mathbf{d})^{T} \mathbf{M}_{A} (\mathbf{u} - \mathbf{N}\mathbf{d})$$
$$\frac{dE}{d\mathbf{d}} = 0 \Rightarrow \mathbf{d} = (\mathbf{N}^{T} \mathbf{M}_{A} \mathbf{N})^{-1} \mathbf{N}^{T} \mathbf{M}_{A} \mathbf{u}$$

– This leads to a definition of the coarse scale in terms of a projection matrix: $\overline{\overline{u}=Pu}$

$$\mathbf{P} = \mathbf{N} (\mathbf{N}^T \mathbf{M}_A \mathbf{N})^{-1} \mathbf{N}^T \mathbf{M}_A$$

Coarse-Fine Decomposition

• Once coarse scale is defined, fine scale is "everything else":

$$u' = u - \overline{u}$$

$$= u - Pu$$

$$= (I - P)u \equiv Qu$$

Concurrent Multiscale Solution

 Use FEM for the coarse scale, MD for the fine scale in the decomposition:

$$\overline{u} = Nd \qquad \qquad \text{solve d using FEM} \\ u' = (I - P)q \qquad \qquad \text{solve q using MD}$$

• With our choice of projection operator, kinetic energy separates completely into coarse and fine scales:

$$K_E = \frac{1}{2}\dot{\mathbf{d}}^T \mathbf{M}\dot{\mathbf{d}} + \frac{1}{2}\dot{\mathbf{q}}^T \widetilde{\mathbf{M}}\dot{\mathbf{q}}$$

- Coupling between scales is only through the forcing term
 - Final momentum equations become:

Coarse scale:
$$\mathbf{M}\ddot{\mathbf{d}} = \mathbf{N}\mathbf{f}(\overline{\mathbf{u}} + \mathbf{u}')$$

Fine scale:
$$m_{\alpha}\ddot{\mathbf{q}}_{\alpha} = \mathbf{f}_{\alpha}(\overline{\mathbf{u}} + \mathbf{u}')$$

Reference: G. Wagner and W.K. Liu, *JCP* **190**:249-74 (2003).

Coarse Scale Modeling

 Coarse scale equation can be related to usual finite element treatment by approximating summations over atoms as domain integrals:

$$\sum_{J} \mathbf{M}_{IJ} \ddot{\mathbf{d}}_{J} = \mathbf{f}_{I} (\overline{\mathbf{u}}, \mathbf{u}')$$

where

$$\mathbf{M}_{IJ} = \int_{\Omega} \rho(\mathbf{x}) N_{I}(\mathbf{x}) N_{J}(\mathbf{x}) d\mathbf{x}$$

 The nodal force depends on the coarse scale only through the deformation gradient F:

$$\mathbf{f}_{I} = -\frac{\partial U}{\partial \mathbf{d}_{I}}$$

$$= -\sum_{\alpha} \frac{\partial W_{\alpha}}{\partial \mathbf{d}_{I}} \Delta V_{\alpha}$$

$$= -\sum_{\alpha} \frac{\partial \mathbf{F}_{\alpha}}{\partial \mathbf{d}_{I}} \frac{\partial W_{\alpha}}{\partial \mathbf{F}_{\alpha}^{T}} \Delta V_{\alpha} \approx -\int_{\Omega} N_{I,\mathbf{x}}(\mathbf{x}) \mathbf{P}^{K}(\mathbf{x}) dV$$

Fine Scale Boundary Conditions

- We want to avoid grading the coarse mesh down to the atomic lattice scale at the boundary
 - expensive
 - too much information
 - limits coarse scale time step
- Information passes from a fine MD lattice directly into a coarse scale mesh
 - small-scale energy can't be represented on the coarse scale, has nowhere else to go
 - leads to internal reflection of small scale waves
- Proper boundary treatment requires accounting for fine scale dynamics that are not simulated directly
 - correct boundary treatment falls out automatically from bridging scale decomposition
 - linearize in the fine scales at the boundary

MD Boundary Condition

$$\begin{vmatrix} \ddot{\mathbf{q}}_1(t) = \mathbf{M}_A^{-1} \mathbf{f}_1^*(t) + \int_0^t \mathbf{\theta}(t - \tau) \mathbf{a}_2'(\tau) d\tau + R_1(t) \\ \mathbf{a}_2'(t) = \mathbf{M}_{A2}^{-1} \mathbf{f}_2^*(t) - \ddot{\mathbf{u}}_2(t) \end{vmatrix}$$

Region 1: MD + FEM

Region 2: FEM only (+ "ghost atoms")

where $f^*(t)$ are forces computed using just the coarse scale displacements outside MD region (e.g. through "ghost atoms")

- The total forcing term consists of three major parts:
 - The standard interatomic force computed in MD simulation by assuming displacements of all atoms just outside the boundary are given by the coarse scale
 - A time history-dependent dissipation at the boundary (similar to a damping term)
 - A random forcing term at the boundary
 - the form of this term can be related to the temperature of the solid:

$$\langle R_i(t)R_j(0)\rangle = -\delta_{ij}\beta(t)k_BT$$

Example Problem: 1D Harmonic Chain

Effects of BC's on Internal Wave Reflection

$$\dot{\mathbf{q}}_{\alpha} = \sum_{I} N_{I} (\mathbf{x}_{\alpha}) \dot{\mathbf{d}}_{I}$$

$$\ddot{\mathbf{q}}_1(t) = \mathbf{M}_A^{-1} \mathbf{f}_1^*(t) + \int_0^t \mathbf{\theta}(t - \tau) \mathbf{a}_2'(\tau) d\tau$$

Energy Transfer out of MD Region

Energy Transfer out of MD Region: Nonlinear Potential

Damping Kernels in Multiple Dimensions

- Damping kernel can be easily computed for any regular crystal lattice across a planar boundary
 - periodicity allows spatial Fourier transform
 - unit cells can be indexed (*l*,*m*,*n*) in 3D, or (*l*,*m*) in 2D
 - boundary condition obtained by solving for atoms just outside boundary (*I*=1) in terms of atoms just inside boundary (*I*=0)
 - final boundary condition has form of time history integration with spatial coupling along boundary:

$$\mathbf{f}_{m}^{1\to 0}(t) = \sum_{m'=-\infty}^{\infty} \int_{0}^{t} \mathbf{\theta}_{m-m'}(t-\tau) \mathbf{u}_{0,m'}(\tau) d\tau$$

- note that \mathbf{u} and \mathbf{f} are vectors containing all dof's in the unit cell, and θ is a matrix coupling them
- Reference: G. Wagner, E. Karpov and W.K. Liu.
 Comp Meth. Appl. Mech. Eng., to appear (2004).

Damping Kernels in 3D: Carbon Structures

2D Multiscale Wave Propagation

Energy Transfer Rates:

No BC: 35.47%

 $N_{crit} = 0$: 90.94%

 $N_{crit} = 1: 92.85\%$

 $N_{crit} = 2: 93.34\%$

 $N_{crit} = 4: 95.27\%$

Full MD: 100%

2D Dynamic Crack Propagation

Problem Description:

- LJ 6-12 potential, σ = ϵ =1
- Nearest neighbor interactions
- 90000 atoms, 1800 finite elements (900 in coupled region)
 - •100 atoms per finite element
- $\Delta t_{fe} = 40 \Delta t_{md}$
- Ramp velocity BC on FEM
- Full MD = 180,000 atoms

Summary: Coupled MD/FEM

- Bridging scale decomposition allows concurrent simulation of fine scale using MD and coarse scale using FEM
 - bridging scale projection provides a unique decomposition of total solution for separation into coarse and fine scales
 - coarse scale mesh need not correspond to atomic lattice for coupling
 - subcycling can be used to take advantage of the different time scales in the coarse and fine regions
 - coarse scale equations and boundary conditions follow directly from the multi-scale formulation
- Future work:
 - study of approximations in boundary conditions
 - truncations of summations/integrals, approximations to kernel function
 - determination of most accurate/efficient integration of coarse scale region near MD boundary
 - development of coupled energy equation to track fine scale energy
 - time averaging as part of coarse scale projection

